Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of cos y (dy/dx) = ex + sin y + x2esin y is
Q. The solution of
cos
y
d
x
d
y
=
e
x
+
s
in
y
+
x
2
e
s
in
y
is
3149
191
Differential Equations
Report Error
A
e
x
−
e
−
s
in
y
+
3
x
3
=
C
15%
B
e
−
x
−
e
−
s
in
y
+
3
x
3
=
C
37%
C
e
x
+
e
−
s
in
y
+
3
x
3
=
C
35%
D
e
x
−
e
s
in
y
+
3
x
3
=
C
13%
Solution:
cos
y
d
x
d
y
=
e
x
.
e
s
in
y
+
x
2
e
s
in
y
=
e
s
in
y
(
x
2
+
e
x
)
⇒
e
s
in
y
cosy
d
x
d
y
=
(
x
2
+
e
x
)
⇒
∫
e
s
in
y
cos
y
d
y
=
∫
(
x
2
+
e
x
)
d
x
s
in
y
=
t
cosy
d
y
=
d
t
⇒
∫
e
−
t
d
t
=
3
x
3
+
e
x
+
C
′
⇒
−
1
e
−
t
=
3
x
3
+
e
x
+
C
′
⇒
e
x
+
e
−
s
in
y
+
3
x
3
=
C