Given differential equation is (2x−10y3)dxdy+y=0
or dxdy=2x+10y3−y
or dxdy=−y2x−10y3=y−2x+10y2
or dxdy+y2x=10y2
Compare with linear differential equation dydx+Px=Q
I.F =e∫y2dy=elogy2=y2 ∴ Required solution is x.y2∫10y62.y2dy+C
or x×y2=10×5y5+C
or xy2=2y5+C