Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The smallest value of k, for which both the roots of the equation x2-8 k x+16(k2-k+1)=0 are real, distinct and have values at least 4 , is
Q. The smallest value of
k
, for which both the roots of the equation
x
2
−
8
k
x
+
16
(
k
2
−
k
+
1
)
=
0
are real, distinct and have values at least
4
, is
2183
189
JEE Advanced
JEE Advanced 2009
Report Error
Answer:
2
Solution:
x
2
−
8
k
x
+
16
(
k
2
−
k
+
1
)
=
0
D
>
0
⇒
k
>
1
…
(1)
2
a
−
b
>
4
⇒
2
8
k
>
4
⇒
k
>
1
…
(2)
f
(
4
)
≥
0
⇒
16
−
32
k
+
16
(
k
2
−
k
+
1
)
≥
0
k
2
−
3
k
+
2
≥
0
k
≤
1
∪
k
≥
2
…
(3)
Using
(
1
)
,
(
2
)
and
(
3
)
k
m
i
n
=
2