Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The smallest positive value of x (in degrees) for which tan (x+100°) = tan (x+50°) ⋅ tan x ⋅ tan (x-50°) is
Q. The smallest positive value of
x
(in degrees) for which
tan
(
x
+
10
0
∘
)
=
tan
(
x
+
5
0
∘
)
â‹…
tan
x
â‹…
tan
(
x
−
5
0
∘
)
is
1428
237
AP EAMCET
AP EAMCET 2019
Report Error
A
2
5
∘
B
82
2
1
∘
​
C
5
5
∘
D
3
0
∘
Solution:
tan
(
x
+
10
0
∘
)
=
tan
(
x
+
5
0
∘
)
â‹…
tan
x
â‹…
tan
(
x
−
5
0
∘
)
⇒
t
a
n
(
x
−
5
0
∘
)
t
a
n
(
x
+
10
0
∘
)
​
=
tan
(
x
+
5
0
∘
)
â‹…
tan
x
⇒
s
i
n
(
x
−
5
0
∘
)
c
o
s
(
x
+
10
0
∘
)
s
i
n
(
x
+
10
0
∘
)
c
o
s
(
x
−
5
0
∘
)
​
=
c
o
s
(
x
+
5
0
∘
)
c
o
s
x
s
i
n
(
x
+
5
0
∘
)
s
i
n
x
​
⇒
s
i
n
(
x
+
10
0
∘
)
c
o
s
(
x
−
5
0
∘
)
−
s
i
n
(
x
−
5
0
∘
)
c
o
s
(
x
+
10
0
∘
)
s
i
n
(
x
+
10
0
∘
)
c
o
s
(
x
−
5
0
∘
)
+
s
i
n
(
x
−
5
0
∘
)
c
o
s
(
x
+
10
0
∘
)
​
=
s
i
n
(
x
+
5
0
∘
)
s
i
n
x
−
c
o
s
(
x
+
5
0
∘
)
c
o
s
x
s
i
n
(
x
+
5
0
∘
)
s
i
n
x
+
c
o
s
(
x
+
5
0
∘
)
c
o
s
x
​
⇒
s
i
n
(
x
+
10
0
∘
−
x
+
5
0
∘
)
s
i
n
(
x
+
10
0
∘
+
x
−
5
0
∘
)
​
=
−
c
o
s
(
x
+
5
0
∘
+
x
)
c
o
s
(
x
+
5
0
∘
−
x
)
​
⇒
s
i
n
(
15
0
∘
)
s
i
n
(
2
x
+
5
0
∘
)
​
=
−
c
o
s
(
2
x
+
5
0
∘
)
c
o
s
(
5
0
∘
)
​
⇒
−
sin
(
2
x
+
5
0
∘
)
cos
(
2
x
+
5
0
∘
)
=
sin
(
9
0
∘
+
6
0
∘
)
cos
5
0
∘
⇒
−
2
2
​
sin
(
2
x
+
5
0
∘
)
cos
(
2
x
+
5
0
∘
)
=
cos
6
0
∘
cos
5
0
∘
⇒
−
2
s
i
n
(
4
x
+
10
0
∘
)
​
=
2
1
​
cos
5
0
∘
⇒
sin
(
4
x
+
10
0
∘
)
=
−
cos
5
0
∘
⇒
sin
(
4
x
+
10
0
∘
)
=
−
sin
4
0
∘
⇒
sin
(
4
x
+
10
0
∘
)
=
sin
(
−
4
0
∘
)
=
sin
(
18
0
∘
+
4
0
∘
)
⇒
(
4
x
+
10
0
∘
)
=
(
18
0
∘
+
4
0
∘
)
⇒
4
x
+
10
0
∘
=
22
0
∘
⇒
4
x
=
22
0
∘
−
10
0
∘
=
12
0
∘
⇒
x
=
3
0
∘