Q.
The slopes of sides BC,CA,AB of triangle ABC whose orthocentre is origin are −1,−2,−3 respectively. If locus of centroid of triangle ABC is y=(nm)x, where m,n are relatively prime then find (n−m).
Equation of altitudes through A, B, C are y=x,x=2y,x=3y let A(α,α),B(2β,β),C(3γ,γ) ∴ Slope of AB=2β−αβ−α=−3⇒β=74α Slope of BC=3γ−2βγ−β=−1⇒21γ−8α7γ−4α=−1⇒γ=73α ∴ Centroid =(3α+2β+3γ,3α+β+γ)=(x,y) ∴xy=α+2β+3γα+β+γ=α+78α+79αα+74α+73α=24α14α=127=nm ∴(n−m)=12−7=5