Let m be the slope of the tangent to the curve y=excosx
Then, m=dxdy=ex(cosx−sinx) diff w.r.t x ⇒dxdm=ex(cosx−sinx)+ex(−cosx−sinx)=−2exsinx
and dx2d2m=−2ex(sinx+cosx)
Put dxdm=0 ⇒sinx=0 ⇒x=0,π,2π
Clearly dx2d2m>0 for x=π
Thus, y is mininum at x=π
Hence, the value of α=π.