We have, x=t2+3t−8 and y=2t2−2t−5
Put x=2 ∴2=t2+3t−8 ⇒t2+3t−10=0 ⇒(t+5)(t−2)=0 ∴t=−5,2
Now, put y=−1 ∴−1=2t2−2t−5 ⇒2t2−2t−4=0 ⇒t2−t−2=0 ⇒(t−2)(t+1)=0 ⇒t=2,−1 ∴t=2[∵t=−1]
Now, dtdx=2t+3 and dtdy=4t−2 ∴dxdy=dx/dtdy/dt =2t+34t−2 ∴(dxdy)t=2=2(2)+34(2)−2 =4+38−2=76
Hence, the slope of tangent is 76.