We have dxdy=xy−cos2(xy)
Putting y=vx, so that dxdy=v+xdxdv, we get v+xdxdv=v−cos2v ⇒cos2vdv=−xdx ⇒sec2vdv=−x1dx
On integration, we get tanv=−logx+logC⇒tan(xy) =−logx+logC
This passes through (1,π/4), therefore 1=logC
So, tan(xy)=−logx+1 ⇒tan(xy)=−logx+loge ⇒y=xtan−1(log(xe))