Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The slope of the normal to the curve y3 -xy -8 = 0 at the point (0, 2) is equal to
Q. The slope of the normal to the curve
y
3
−
x
y
−
8
=
0
at the point
(
0
,
2
)
is equal to
1682
239
KEAM
KEAM 2012
Application of Derivatives
Report Error
A
-3
0%
B
-6
33%
C
3
33%
D
6
33%
E
8
33%
Solution:
Given curve is
y
3
−
x
y
−
8
=
0
On differentiating w.r.t.
x
, we get
3
y
2
d
x
d
y
−
x
d
x
d
y
−
y
−
0
=
0
⇒
d
x
d
y
(
3
y
2
−
x
)
=
y
d
x
d
y
=
(
3
y
2
−
x
)
y
⇒
(
d
x
d
y
)
(
0
,
2
)
=
3
(
2
)
2
−
0
2
=
6
1
∴
The slope of the normal
=
−
d
y
/
d
x
1
=
−
6