Let height of a right circular cone =hcm and OA=rcm
Given, slant height of a right circular cone =3cm In △OAB, ∠BOA=90∘ (OB)2+(OA)2=(AB)2
[apply pythogoras theorem] (h)2+(r)2=(3)2 r=9−h2… (i)
We know that, Volume of cone =3ππr2h V=3π(9−h2)×h [ from Eq. (i), r=9−h2] V=3π(9h−h3) dhdV=3π(9−3h2) ∴dhdV=0⇒3π(9−3h2)=0 ⇒h2=39=3⇒h=3 dh2d2V=3−6×h<0
So, h=3 of the cone for maximum volume