Using sine law, n−1sinα=n+1sin2α ⇒2cosα=(n−1)n+1 ⇒cosα=2(n−1)n+1 ⇒2n(n+1)n2+(n+1)2−(n−1)2 ⇒2(n−1)(n+1) (using cosine law) ⇒2n+(n+1)n2+4n=2(n−1)(n+1) ⇒2(n+1)n+4=2(n−1)n+1 ∴(n+1)2=(n+4)(n−1) ⇒n=5
Hence, lengths of the side of the triangle are 4,5 and 6