Q.
The sides of a right angled triangle are integers. The length of one of the sides is 12. The largest possible radius of the incircle of such a triangle is
In right angle ΔABC
Let AB=12 BC=x+r AC=12+x−r AC2=AB2+BC2 ⇒(12+x−r)2=(12)2+(x+r)2 ⇒144+24(x−r)+(x−r)2 =144+(x+r)2 ⇒24(x−r)=(x+r)2−(x−r)2 ⇒24(x−r)=4xr ⇒6(x−r)=xr ⇒r=6+x6x
At x=6,r=3
At x=12,r=4
At x=30,r=5 ∴ Maximum radius =5