Let (k,k2) be any point on the parabola. d2=(k−3)2+(k2−0)2 D=(k−3)2+k4( where d2=D)
differentiating w.r.t. k dkdD=2(k−3)+4k3....(i)
For maximum or minimum dkdD=0 ⇒2k−6+4k3=0⇒2k3+k−3=0 ⇒(k−1)(2k3+2k+3)=0 ⇒(k−1)=0 or 2k2+2k+3=0⇒k=1
Again differentiating·(i) w.r.t. k dk2d2D=2+12k2 [dk2d2D]k=1=14>0
Hence, at k=1, the distance is minimum.
Shortest distance =(1−3)2+(12)2=5