Q.
The shortest distance between the lines 1+x=2y=−12z and x=y+2=6z−6 is
2185
194
J & K CETJ & K CET 2008Three Dimensional Geometry
Report Error
Solution:
The shortest distance, between two lines l1x−x1=m1y−y1=n1z−z1
and l2x−x2=m2y−y2=n2z−z2
is d=(m1n2−m2n1)2+(n1l2−l1n2)2+(l1m2−m1l2)2∣∣x2−x1l1l2y2−y1m1m2z2−z1n1n2∣∣
Given lines are 12x+1=6y=−1z
and 6x=6y+2=1z−1 ∴d=(6+6)2+(−6−12)2+(72−36)2∣∣0+1126−2−0661−0−11∣∣ =144+324+1296∣∣1126−2661−11∣∣ =17641(6+6)+2(12+6)+1(72−36) =176484=4284=2