Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The set of values of x which satisfy the inequations 5x + 2 < 3x + 8 and (x+2/x-1) < 4 is
Q. The set of values of
x
which satisfy the inequations
5
x
+
2
<
3
x
+
8
and
x
−
1
x
+
2
<
4
is
1894
215
Linear Inequalities
Report Error
A
(
−
∞
,
1
)
10%
B
(
2
,
3
)
46%
C
(
−
∞
,
3
)
17%
D
(
−
∞
,
1
)
∪
(
2
,
3
)
26%
Solution:
We have,
5
x
+
2
<
3
x
+
8
and
x
−
1
x
+
2
<
4
⇒
x
<
3
and
(
x
−
1
)
2
(
x
+
2
)
(
x
−
1
)
<
4
,
x
=
1
⇒
x
<
3
and
(
x
+
2
)
(
x
−
1
)
<
4
x
2
−
8
x
+
4
,
x
=
1
⇒
x
<
3
and
3
x
2
−
9
x
+
6
>
0
,
x
=
1
⇒
x
<
3
and
x
2
−
3
x
+
2
>
0
,
x
=
1
⇒
x
<
3
and
(
x
−
1
)
(
x
−
2
)
>
0
,
x
=
1
⇒
x
<
3
and
(
x
<
1
or
x
>
2
)
⇒
x
∈
(
−
∞
,
1
)
∪
(
2
,
3
)
.