We have, 2≤∣x−3∣<4
Case I If x<3, then 2≤∣x−3∣<4 ⇒2≤−(x−3)<4 ⇒2≤−x+3<4
Subtracting 3 from both sides, −1≤−x<1
Multiplying (−1) on both sides, −1<x≤1 ⇒x∈(−1,1]
Case II If x>3, then 2≤∣x−3∣<4 ⇒2≤x−3<4
Adding 3 on both sides, ⇒5≤x<7
Hence, the solution set of given inequality is x∈(−1,1]∪[5,7)