Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The set of values of x for which ( tan 3x - tan 2x/1+ tan 3x tan2x) = 1 is
Q. The set of values of
x
for which
1
+
t
a
n
3
x
t
a
n
2
x
t
a
n
3
x
−
t
a
n
2
x
​
=
1
is
2228
225
AMU
AMU 2015
Trigonometric Functions
Report Error
A
Ï•
7%
B
{
4
Ï€
​
}
25%
C
{
nπ
+
4
Ï€
​
,
n
=
1
,
2
,
3
,
...
}
56%
D
{
2
nπ
+
4
Ï€
​
,
n
=
1
,
2
,
3
,
...
}
12%
Solution:
We have,
1
+
t
a
n
3
x
t
a
n
2
x
t
a
n
3
x
−
t
a
n
2
x
​
=
1
⇒
tan
(
3
x
−
2
x
)
=
1
⇒
tan
x
=
1
⇒
x
=
nπ
+
4
Ï€
​
But for this value of
x
, we have
tan
2
x
=
tan
(
2
nπ
+
2
Ï€
​
)
=
∞
which does not satisfy the given equation as it reduces to an indeterminate form.
∴
x
=
Ï•