Let f(x)=1+logx−x
Clearly f(x) is defined for x>0 f′(x)=x1−1=x1−x f′(x)>0 for 0<x<1 and f′(x)<0 for x>1 ⇒f(x) is increasing for 0<x<1 and is decreasing for x>1 i.e., for x∈(1,∞) ∴f(x)<f(1) for all x∈(0,1)
and f(x)<f(1) for, all x∈(1,∞) ⇒f(x)<f(1) for, all x∈(0,1)∪(1,∞)
Hence 1+logx−x<1+log1−1=0
i.e., 1+logx<x for x∈(0,1)∪(1,∞)