Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The set of values of α such that f: R arrow[0, (π/2)) defined by f(x)= tan-1(x2+x+α2) is onto is
Q. The set of values of
α
such that
f
:
R
→
[
0
,
2
π
)
defined by
f
(
x
)
=
tan
−
1
(
x
2
+
x
+
α
2
)
is onto is
2107
219
TS EAMCET 2020
Report Error
A
(
−
2
1
,
2
1
)
B
(
−
4
1
,
4
1
)
C
(
−
∞
,
−
2
1
)
∪
(
2
1
,
∞
)
D
(
−
∞
,
−
4
1
)
∪
(
4
1
,
∞
)
Solution:
Let
A
=
{
x
:
0
≤
x
<
2
π
}
Since
f
:
R
→
A
is an onto function,
therefore, Range of
f
=
A
Range of
f
=
A
⇒
0
≤
f
(
x
)
≤
2
π
for all
x
∈
R
⇒
0
≤
tan
−
1
(
x
2
+
x
+
α
2
)
≤
2
π
for all
x
∈
R
⇒
0
≤
x
2
+
x
+
α
2
≤
∞
for all
x
∈
R
⇒
x
2
+
x
+
α
2
≥
0
for all
x
∈
R
⇒
1
−
4
α
2
≤
0
⇒
α
2
≥
4
1
∴
(
−
∞
,
−
2
1
)
∪
(
2
1
,
∞
)