Q.
The set of values of a for which the equation (x2+x)+2)2−(a−3)(x2+x+2)(x2+x+1)+(a−4)(x2+(x+1)2=0 has at least one real root is
1464
191
Complex Numbers and Quadratic Equations
Report Error
Solution:
The given equation can be written as (z+1)2−(a−3)z(z+1)+(a−4)z2=0 [ Putting x2+x+1=z] ⇒(1+3−a+a−4)z2+(2+3−a)z+1=0 ⇒(5−a)z+1=0
or z=a−51 ⇒x2+x+1−a−51=0 ⇒x2+x+a−5a−6=0
whose roots will be real if discriminant ≥0 ⇒1−a−54(a−6)≥0 ⇒a−53a−19≤0 ∴5<a≤319