Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The set of real values of x for which f(x) = (x/log x) increasing, is
Q. The set of real values of x for which
f
(
x
)
=
l
o
g
x
x
increasing, is
3640
220
KCET
KCET 2010
Application of Derivatives
Report Error
A
{
x
:
x
<
e
}
13%
B
{
1
}
27%
C
{
x
:
x
≥
e
}
47%
D
empty
13%
Solution:
f
(
x
)
=
l
o
g
x
x
f
′
(
x
)
=
(
l
o
g
x
)
2
l
o
g
x
⋅
1
−
x
⋅
x
1
=
(
l
o
g
x
)
2
(
l
o
g
x
−
1
)
We know that,
f
(
x
)
is increasing (strictly) When
f
′
(
x
)
>
0
⇒
(
l
o
g
x
)
2
(
l
o
g
x
−
1
)
>
0
⇒
(
lo
g
x
−
1
)
>
0
⇒
lo
g
x
>
1
⇒
lo
g
e
x
>
lo
g
e
e
⇒
x
>
e
Hence,
x
:
x
≥
e