Q.
The set of all values of λ for which the system of linear equations 2x1−2x2+x3=λx1 2x1−3x2+2x3=λx2 −x1+2x2=λx3
has a non-trivial solution
Given system of linear equations 2x1−2x2+x3=λx1.... (i) ⇒(2−λ)x1−2x2+x3=0.....(ii) 2x1−3x2+2x3=λx2.....(iii) ⇒2x1−(3+λ)x2+2x3=0 −x1+2x2=λx3 ⇒−x1+2x2−λx3=0
Since, the system has non-trivial solution. ∴⎣⎡2−λ2−1−2−(3+λ)212λ⎦⎤=0 ⇒(2−λ)(3λ+λ2−4)+2(−2λ+2)+1(4−3)−λ)=0 ⇒(2−λ)(λ2+3λ−4)+4(1−λ)+(1−λ)=0 ⇒(2−λ)(λ+4)(λ−1)+5(1−λ)=0 ⇒(λ−1)[(2−λ)(λ+4)−5]=0 ⇒(λ−1)(λ2+2λ−3)=0 ⇒(λ−1)[(λ−1)(λ+8)]=0 ⇒(λ−1)2(λ+3)=0 ⇒λ=1,1,−3
Hence, λ contains two elements.