λ=cos22x−2sin4x−2cos2x
convert all in to cosx. λ=(2cos2x−1)2−2(1−cos2x)2−2cos2x =4cos4x−4cos2x+1−2(1−2cos2x+cos4x)−2cos2x =2cos4x−2cos2x+1−2 =2cos4x−2cos2x−1 =2[cos4x−cos2x−21] =2[(cos2x−21)2−43] λmax=2[41−43]=2×(−42)=−1 (max Value ) λmin=2[0−43]=−23( MinimumValue ) So, Range =[−23,−1]