Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The set of all values of k >-1, for which the equation (3 x2+4 x+3)2-(k+1)(3 x2+4 x+3) (3 x2+4 x+2)+k(3 x2+4 x+2)2=0 has real roots, is :
Q. The set of all values of
k
>
−
1
, for which the equation
(
3
x
2
+
4
x
+
3
)
2
−
(
k
+
1
)
(
3
x
2
+
4
x
+
3
)
(
3
x
2
+
4
x
+
2
)
+
k
(
3
x
2
+
4
x
+
2
)
2
=
0
has real roots, is :
2911
183
JEE Main
JEE Main 2021
Complex Numbers and Quadratic Equations
Report Error
A
(
1
,
2
5
]
B
[
2
,
3
)
C
[
−
2
1
,
1
)
D
(
2
1
,
2
3
]
−
{
1
}
Solution:
(
3
x
2
+
4
x
+
3
)
2
−
(
k
+
1
)
(
3
x
2
+
4
x
+
3
)
(
3
x
2
+
4
x
+
2
)
+
k
(
3
x
2
+
4
x
+
2
)
2
=
0
Let
3
x
2
+
4
x
+
3
=
a
and
3
x
2
+
4
x
+
2
=
b
⇒
b
=
a
−
1
Given equation becomes
⇒
a
2
−
(
k
+
1
)
ab
+
k
b
2
=
0
⇒
a
(
a
−
kb
)
−
b
(
a
−
kb
)
=
0
⇒
(
a
−
kb
)
(
a
−
b
)
=
0
⇒
a
=
kb
or
a
=
b
(
reject
)
∵
a
=
kb
⇒
3
x
2
+
4
x
+
3
=
k
(
3
x
2
+
4
x
+
2
)
⇒
3
(
k
−
1
)
x
2
+
4
(
k
−
1
)
x
+
(
2
k
−
3
)
=
0
for real roots
D
≥
0
⇒
16
(
k
−
1
)
2
−
4
(
3
(
k
−
1
))
(
2
k
−
3
)
≥
0
⇒
4
(
k
−
1
)
{
4
(
k
−
1
)
−
3
(
2
k
−
3
)}
≥
0
⇒
4
(
k
−
1
)
{
−
2
k
+
5
}
≥
0
⇒
−
4
(
k
−
1
)
{
2
k
−
5
}
≥
0
⇒
(
k
−
1
)
(
2
k
−
5
)
≤
0
∴
k
∈
[
1
,
2
5
]
∵
k
=
1
∴
k
∈
(
1
,
2
5
]