For f(x) to be decreasing for all x, we must have f′(x)<0 for all x. ∴5(1−aa+4−1)x4−3<0 for all x
or (1−aa+4−1)x4<53 for all x
or (1−aa+4−1)=0 ⇒1−aa+41
This is trivially true for a>1 i.e., when a ∈(1,∞)
But if a<1, then ∵a+4 is real ∴a≥−4 ∴−4≤a<1
For these values of a ≤1−aa+4≤1 ∴a+4≤1−a ⇒(a+4)=1+a2−2a ⇒0≤a2−3a−3 ⇒0≤(a−23)2−(221)2 ⇒2−3−21≤a≤23−21 ⇒−4≤a≤23−21[∵a=−4]
Hence a ∈[−4,23−21]∪(1,∞)