Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The set of all values of a2 for which the line x+y=0 bisects two distinct chords drawn from a point P ((1+a/2), (1-a/2)) on the circle 2 x2+2 y2-(1+a) x-(1-a) y=0, is equal to :
Q. The set of all values of
a
2
for which the line
x
+
y
=
0
bisects two distinct chords drawn from a point
P
(
2
1
+
a
,
2
1
−
a
)
on the circle
2
x
2
+
2
y
2
−
(
1
+
a
)
x
−
(
1
−
a
)
y
=
0
, is equal to :
1943
127
JEE Main
JEE Main 2023
Conic Sections
Report Error
A
(
8
,
∞
)
B
(
0
,
4
]
C
(
4
,
∞
)
D
(
2
,
12
]
Solution:
x
2
+
y
2
−
2
(
1
+
a
)
x
−
2
(
1
−
a
)
y
=
0
Centre
(
4
1
+
a
,
4
1
−
a
)
⇒
(
h
,
k
)
P
(
2
1
+
a
,
2
1
−
a
)
⇒
(
2
h
,
2
k
)
Equation of chord
⇒
T
=
S
1
⇒
(
x
−
y
)
λ
−
2
2
h
(
x
+
λ
)
−
2
(
2
k
)
(
y
−
λ
)
=
2
λ
2
−
2
h
(
λ
)
+
2
kλ
Now,
λ
(
2
h
,
2
k
)
satisfies the chord
∴
(
2
h
−
2
k
)
λ
−
h
(
x
+
λ
)
−
k
(
y
−
λ
)
⇒
2
λ
2
+
4
kλ
−
4
hλ
+
hλ
−
kλ
+
h
x
+
k
y
=
0
⇒
2
λ
2
+
λ
(
3
k
−
3
h
)
+
k
y
+
h
x
=
0
⇒
D
>
0
⇒
9
(
k
−
h
)
2
−
8
(
k
y
+
h
x
)
>
0
⇒
9
(
k
−
h
)
2
−
8
(
2
k
2
+
2
h
2
)
>
0
⇒
−
7
k
2
−
7
h
2
−
18
kh
>
0
⇒
7
k
2
+
7
h
2
+
18
kh
<
0
⇒
7
(
4
1
−
a
)
2
+
7
(
4
1
+
a
)
2
+
18
(
16
1
−
a
2
)
<
0
⇒
7
[
16
2
(
1
+
a
2
)
]
+
16
18
(
1
−
a
2
)
<
0
,
a
2
=
t
⇒
8
7
(
1
+
t
)
+
16
18
(
1
−
t
)
<
0
⇒
16
14
+
14
t
+
18
−
18
t
<
0
⇒
4
t
>
32
t
>
8
a
2
>
8