Q.
The set of all real values of a so that the range of the function y=x+1x2+a is R, is
520
116
Relations and Functions - Part 2
Report Error
Solution:
We have y=x+1x2+a ⇒x2−yx+(a−y)=0
As x∈R, so discriminant ≥0 ⇒y2−4(a−y)≥0,∀y∈R ⇒y2+4y−4a≥0∀y∈R ⇒ It is possible if 16+16a≤0 ⇒1+a≤0 ⇒a≤−1 but a=−1 ∴a∈(−∞,−1)