Given, x2−∣x+2∣+x>0...(i)
Case I When x+2≥0 ∴x2−x−2+x>0⇒x2−2>0 ⇒x<−2​ or x>2​ ⇒x∈(−2,−2​)∪(2​,∞)...(ii)
Case II When x+2<0 ∴x2+x+2+x>0 ⇒x2+2x+2>0 ⇒(x+1)2+1>0
which is true for all x. ∴x≤−2 or x∈(−∞,−2)...(iii)
From Eqs. (ii) and (iii), we get x∈(−∞−2​)∪(2​,∞)