Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sequence xk is defined by xk+1=xk2+xk and x1=(1/2) . Then [(1/x1+1)+(1/x2+1)+ ldots+(1/x100+1)] (where [.] denotes the greatest integer function) is equal to
Q. The sequence
{
x
k
}
is defined by
x
k
+
1
=
x
k
2
+
x
k
and
x
1
=
2
1
.
Then
[
x
1
+
1
1
+
x
2
+
1
1
+
…
+
x
100
+
1
1
]
(where [.] denotes the greatest integer function) is equal to
4701
216
Sequences and Series
Report Error
A
0
B
2
C
4
D
1
Solution:
x
k
+
1
1
=
x
k
(
x
k
+
1
)
1
=
x
k
1
−
x
k
+
1
1
⇒
x
k
+
1
1
=
x
k
1
−
x
k
−
1
1
∴
x
1
+
1
1
+
x
2
+
1
1
+
…
+
x
100
+
1
1
=
x
1
1
−
x
101
1
∴
As
0
<
x
101
1
<
1
∴
[
x
1
+
1
1
+
x
2
+
1
1
+
…
+
x
100
+
1
1
]
=
1