Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sequence a1, a2, a3, ldots, a98 satisfies the relation an+1 =an+1 for n=1,2,3, ldots, 97 and has the sum equal to 4949. Then the value of displaystyle∑k=149 a2 k is
Q. The sequence
a
1
,
a
2
,
a
3
,
…
,
a
98
satisfies the relation
a
n
+
1
=
a
n
+
1
for
n
=
1
,
2
,
3
,
…
,
97
and has the sum equal to 4949. Then the value of
k
=
1
∑
49
a
2
k
is
3788
223
Sequences and Series
Report Error
A
2501
9%
B
2499
74%
C
2401
12%
D
2110
4%
Solution:
We have
a
n
+
1
=
a
n
+
1
a
2
=
a
1
+
1
a
3
=
a
2
+
1
Thus, the series is:
a
1
+
(
a
1
+
1
)
+
(
a
1
+
1
+
1
)
+
…
+
(
a
1
+
97
)
Sum of this series is given
4949
.
4949
=
2
98
(
a
1
+
a
1
+
97
)
⇒
2
a
1
=
101
−
97
⇒
a
1
=
2
So,
a
2
=
3
,
a
4
=
5
,
…
∴
a
2
+
a
4
+
…
+
a
98
=
3
+
5
+
7
+
…
+
99
=
2
49
(
3
+
99
)
=
2499