Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The roots of (x-a)(x-a-1)+(x-a-1)(x-a-2)+(x-a)(x-a-2)=0 a∈ R are always
Q. The roots of
(
x
−
a
)
(
x
−
a
−
1
)
+
(
x
−
a
−
1
)
(
x
−
a
−
2
)
+
(
x
−
a
)
(
x
−
a
−
2
)
=
0
a
∈
R
are always
5590
171
VITEEE
VITEEE 2009
Report Error
A
equal
B
imaginary
C
real and distinct
D
rational and equal
Solution:
(
x
−
a
)
(
x
−
a
−
1
)
+
(
x
−
a
−
1
)
(
x
−
a
−
2
)
+
(
x
−
a
)
(
x
−
a
−
2
)
=
0
Let
x
−
a
=
t
, then
t
(
t
−
1
)
+
(
t
−
1
)
(
t
−
2
)
+
(
t
−
2
)
=
0
⇒
t
2
t
+
t
2
−
3
t
+
2
+
t
3
−
2
t
=
0
⇒
3
t
2
−
6
t
+
2
=
0
⇒
t
=
2
(
3
)
6
±
36
−
24
=
2
(
3
)
6
±
2
3
⇒
x
−
a
=
3
3
±
3
⇒
x
=
a
+
3
3
±
3
Hence,
x
is real and distinct.