Q.
The roots of the equation z4+az3+(12+9i)z2+bz=0 (where a and b are complex numbers) are the vertices of a square, then find the value of ∣2b−13a∣.
137
105
Complex Numbers and Quadratic Equations
Report Error
Answer: 0060
Solution:
Note that z=0 is one root of the given equation. z4+az3+(12+9j)z2+bz=0
cancelling z, we get z3+az2+(12+9i)z+b=0....(1)
The 3 vertices of the square other than (0+0i) are u,iu,u(1+i) (think!) Now, u(ui)+(iu)(1+i)u+[(1+i)u]u=12+9i (using theory of equation) u2[i+i−1+1+i]=12+9i 3iu2=12+9i u2=i4+3i=3−4i⇒u=3−4i=±(2−i) ∴u=2−i or −2+i (both values of u will give the same result) again, −a=u+ui+u(1+i)=u[1+i+1+i]=2u(1+i)=2(2−i)(1+i)=2(3+i)=6+2i a=−6−2i
Again (u)(ui)(1+i)u=−b −b=u3(−1+i) b=(2−i)3(1−i)=[8−i3−6i(2−i)](1−i)=(8+i−12i−6)(1−i)=(2−11i)(1−i) b=2−2i−11i−11=−9−13i ∴b=−9−13i
Hence, 2b−13a=2(−9−13i)−13(−6−2i)=60.
Note: If we take u=−(2−i) then a=6+2i;b=9+13i.
Then (2b−13a)=−60 Ans. ]
[18-05-2014, CC JEE Adv, P-2]