2149
236
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, z4+1=0⇒z4=−1 ⇒z=(cosπ+isinπ)1/4 ⇒z=cos41(2kπ+π)+isin41(2kπ+π),k=0,1,2,3 ⇒z=cos4π+isin4π,cos43π+isin43π cos45π+isin45π,cos47π+isin47π =21(1+i),21(−1+i),21(−1−i),21(1−i)
Hence, the four roots of z4+1=0 are 21(±1±i).