sin−1(log[x]) is defined if −1≤log[x]≤1and[x]>0 ⇒e1≤[x]≤e⇒[x]=1,2⇒x∈[1,3)
Again, log(sin−1[x]) is defined if sin−1[x]>0and−1≤[x]≤1 ⇒[x]>0and−1≤[x]≤⇒0<[x]≤1 ⇒x∈[1,2) ∴ Domain of f(x)=[1,2)
For 1≤x<2,[x]=1<br/>∴f(x)=sin−10+log2π=log2π,∀x∈[1,2) ∴ Range of (x)={log2π}