sin−1(log[x]) is defined if −1≤log[x]≤1 and [x]>0 ⇒e1≤[x]≤e ⇒[x]=1,2 ⇒x∈[1,3)
Again, log(sin−1[x]) is defined if sin−1[x]>0 and −1≤[x]≤1 ⇒[x]>0 and −1≤[x]≤1 ⇒0<[x]≤1 ⇒x∈[1,2) ∴ Domain of f(x)=[1,2)
For 1≤x<2,[x]=1 ∴f(x)=sin−10+log2π=log2π,∀x∈[1,2) ∴ Range of f(x)={log2π}