f(x) is defined if 3x2−4x+5≥0 ⇒3[x2−34​x+35​]≥0⇒[(x−32​)2+911​]≥0
Which is true for all real x ∴ Domain (f)=(−∈fty,∈fty)
Let, y=23x2−4x+5​ ⇒4y2​=3x2−4x+5i.e.3x2−4x+(5−4y2​)=0
For x to be real, 16−12(5−4y2​)≥0 ⇒2y​≥311​​ ∴ Range of y=[2311​​,∞)