Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The range of parameter ' b ' for which the function f(x)=β« limits0x(b t2+b+ cos t) d t is monotonic for all real values of x, is
Q. The range of parameter '
b
' for which the function
f
(
x
)
=
0
β«
x
β
(
b
t
2
+
b
+
cos
t
)
d
t
is monotonic for all real values of
x
, is
65
112
Application of Derivatives
Report Error
A
[
β
1
,
1
]
B
(
β
β
,
β
1
]
βͺ
[
1
,
β
)
C
(
β
β
,
β
1
)
βͺ
(
1
,
β
)
D
(
β
1
,
1
)
Solution:
f
(
x
)
=
0
β«
x
β
(
b
t
t
2
+
b
+
cos
t
)
d
t
f
β²
(
x
)
=
b
x
2
+
b
+
cos
x
Case-1:
f
(
x
)
is monotonic increasing
β
x
β
R
f
β²
(
x
)
β₯
0
β
b
2
+
b
+
cos
x
β₯
0
(
Β minimumΒ
cos
x
=
β
1
)
b
x
2
+
b
β
1
β₯
0
β
b
>
0
,
D
β€
0
0
β
4
b
(
b
β
1
)
β€
0
β
b
(
b
β
1
)
β₯
0
β
b
β
(
β
β
,
0
]
βͺ
[
1
,
β
)
b
β
[
1
,
β
)
Case-2:
f
(
x
)
is monotonic decreasing
β
x
β
R
f
β²
(
x
)
β€
0
β
b
2
+
b
+
cos
x
β€
0
(
Β maximumΒ
cos
x
=
1
)
b
x
2
+
b
+
1
β€
0
β
b
<
0
,
D
β€
0
0
β
4
b
(
b
+
1
)
β€
0
β
b
(
b
+
1
)
β₯
0
β
b
β
(
β
β
,
β
1
]
βͺ
[
0
,
β
)
b
β
(
β
β
,
β
1
]