Given function is f(x)=(a+1)−∣x∣a−∣x∣,(a>0) ∵f(x)≥0,∀x∈ domain of f(x)
Now, let (a+1)−∣x∣a−∣x∣=y ⇒a−∣x∣=y(a+1)−y∣x∣[∵ assuming ∣x∣=a+1] ⇒(y−1)∣x∣=y(a+1)−a ⇒∣x∣=y−1y(a+1)−a≥0,∀x∈ domain of f(x) ∴y∈(−∞,a+1a]∪(1,∞)( as a>0)
So, range of f(x)=y∈[0,a+1a]∪(1,∞)
[ as y≥0]