We know that range of the expression asinx+bcosx is [−a2+b2,a2+b2] i.e., −a2+b2≤asinx+bcosx≤a2+b2
So, −32+42≤3sinx+4cosx≤32+42 ⇒−5≤3sinx+4cosx≤5 ⇒−5+2≤3sinx+4cosx+2≤5+2 ⇒−3≤3sinx+4cosx+2≤7 ⇒−31≥3sinx+4cosx+21≥71
So, range of 3sinx+4cosx+21 is (−∞,−31]∪[71,∞).