Q.
The radius of two concentric circles is 8cm and 17cm respectively. If the chord of the largest circle touches the smallest circle externally then find the length of the largest chord.
Let ' O ' be the centre of circle and PQ is the chord of the largest circle.
Here, OP=17cm and OR=8cm,
In right △ORP,∠R=90∘
By using Pythagoras theorem, (OP)2=(OR)2+(PR)2 ⇒(17)2=(8)2+(PR)2 ⇒(PR)2=289−64⇒(PR)2=225 ⇒PR=15cm⇒PQ=2(PR) ⇒PQ=2(15)=30cm