Given equation of circle is (xcosθ+ysinθ−a)2+(xsinθ−ycosθ−b)2 =k2 ⇒x2cos2θ+y2sin2θ+2xysinθ.cosθ+a2 −2a(xcosθ+ysinθ)+x2sin2θ+y2cos2θ −2xysinθ.cosθ+b2−2b(xsinθ−ycosθ)=k2 ⇒x2(sin2θ+cos2θ)+y2(sin2θ+cos2θ) +(−2acosθ−2bsinθ)x+(−2asinθ+2bcosθ)y +(a2+b2−k2)=0 ⇒x2+y2−2(acosθ+bsinθ)x+2(−asinθ+bcosθ)y+(a2+b2−k2)=0 ..(i) (∵sin2θ+cos2θ=1)
On comparing with x2+y2+2gx+2fy+c=0, we get g=−(acosθ+bsinθ), f=+(−asinθ+bcosθ)
and c=a2+b2−k2 ∴ Radius =g2+f2−c =(acosθ+bsinθ)2+(−asinθ+bcosθ)2−(a2+b2−k2) =a2cos2θ+b2sin2θ+2absinθ.cosθ +a2sin2θ+b2cos2θ−2absinθ.cosθ −(a2+b2−k2) ⇒a2+b2−a2−b2+k2=k2=k