Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The radii of the escribed circles of triangle ABC are r a , r b and r c respectively. If ra+rb=3 R and rb+rc=2 R, then the smallest angle of the triangle is
Q. The radii of the escribed circles of
△
A
BC
are
r
a
,
r
b
and
r
c
respectively. If
r
a
+
r
b
=
3
R
and
r
b
+
r
c
=
2
R
, then the smallest angle of the triangle is
92
136
Inverse Trigonometric Functions
Report Error
A
tan
−
1
(
2
−
1
)
B
2
1
tan
−
1
(
3
)
C
2
1
tan
−
1
(
2
+
1
)
D
tan
−
1
(
2
−
3
)
Solution:
We have
r
a
+
r
b
=
3
R
⇒
s
−
a
Δ
+
s
−
b
Δ
=
3
R
=
4Δ
3
ab
c
(
R
=
4Δ
ab
c
)
⇒
(
s
−
a
)
(
s
−
b
)
Δ
(
s
−
b
+
s
−
a
)
=
4Δ
3
ab
c
⇒
(
s
−
a
)
(
s
−
b
)
c
Δ
=
4Δ
3
ab
c
⇒
(
s
−
a
)
(
s
−
b
)
Δ
2
=
4
3
ab
⇒
4
s
(
s
−
c
)
=
3
ab
⇒
(
a
+
b
+
c
)
(
a
+
b
−
c
)
=
3
ab
⇒
(
a
+
b
)
2
−
c
2
=
3
ab
⇒
a
2
+
b
2
−
c
2
=
ab
⇒
c
2
=
a
2
+
b
2
−
ab
⇒
a
2
+
b
2
−
2
ab
cos
C
=
a
2
+
b
2
−
ab
(
A
s
c
2
=
a
2
+
b
2
−
2
ab
cos
C
)
⇒
cos
C
=
2
1
⇒
∠
C
=
6
0
∘
…
.
(
1
)
∣∣∣
l
y
from
r
b
+
r
c
=
2
R
⇒
s
−
b
Δ
+
s
−
c
Δ
=
2
R
⇒
(
s
−
b
)
(
s
−
c
)
Δ
(
2
s
−
b
−
c
)
=
4Δ
2
ab
c
⇒
(
s
−
b
)
(
s
−
c
)
2
Δ
2
=
b
c
⇒
2
s
(
s
−
a
)
=
b
c
⇒
(
b
+
c
+
a
)
(
b
+
c
−
a
)
=
2
b
c
⇒
(
b
+
c
)
2
−
a
2
=
2
b
c
⇒
b
2
+
c
2
=
a
2
⇒
∠
A
=
9
0
∘
⇒
∠
B
=
3
0
∘