Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The possible values of x, which satisfy the trigonometric equation tan-1((x-1/x-2))+ tan-1((x+1/x+2))=(Ï€/4) are
Q. The possible values of
x
, which satisfy the trigonometric equation
tan
−
1
(
x
−
2
x
−
1
​
)
+
tan
−
1
(
x
+
2
x
+
1
​
)
=
4
Ï€
​
are
2007
196
WBJEE
WBJEE 2017
Inverse Trigonometric Functions
Report Error
A
±
2
​
1
​
63%
B
±
2
​
15%
C
±
2
1
​
16%
D
±
2
6%
Solution:
We have,
tan
−
1
(
x
−
2
x
−
1
​
)
+
tan
−
1
(
x
+
2
x
+
1
​
)
=
4
Ï€
​
⇒
tan
−
1
[
1
−
x
−
2
x
−
1
​
â‹…
x
+
2
x
+
1
​
x
−
2
x
−
1
​
+
x
+
2
x
+
1
​
​
]
=
4
Ï€
​
⇒
(
x
−
2
)
(
x
+
2
)
−
(
x
−
1
)
(
x
+
1
)
(
x
−
1
)
(
x
+
2
)
+
(
x
−
2
)
(
x
+
1
)
​
=
tan
4
Ï€
​
⇒
x
2
−
4
−
x
2
+
1
x
2
+
x
−
2
+
x
2
−
x
−
2
​
=
1
⇒
−
3
2
x
2
−
4
​
=
1
⇒
2
x
2
−
4
=
−
3
⇒
2
x
2
=
1
⇒
x
2
=
2
1
​
⇒
x
=
±
2
​
1
​