Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The possible values of scalar textk such that the matrix textA- 1 - kI is singular where A=[ 1 0 2 0 2 1 1 0 0 ], are
Q. The possible values of scalar
k
such that the matrix
A
−
1
−
k
I
is singular where
A
=
⎣
⎡
1
0
1
0
2
0
2
1
0
⎦
⎤
,
are
2891
225
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
2
−
1
,
2
B
−
1
,
2
1
C
2
1
,
2
−
1
D
−
1
,
1
Solution:
∣
∣
A
−
1
−
kI
∣
∣
=
0
∣
A
∣
∣
∣
A
−
1
−
kI
∣
∣
=
0
(
∣
A
∣
=
0
)
∣
I
−
kA
∣
=
0
∣
∣
k
l
−
A
∣
∣
=
0
⇒
∣
∣
A
−
k
1
⋅
I
∣
∣
=
0
⇒
∣
A
−
λ
I
∣
=
0
,
where
λ
=
k
1
⇒
∣
∣
1
−
λ
0
1
0
2
−
λ
0
2
1
−
λ
∣
∣
=
0
⇒
(
1
−
λ
)
(
−
λ
)
(
2
−
λ
)
+
2
(
0
−
(
2
−
λ
))
=
0
⇒
−
λ
3
+
3
λ
2
−
2
λ
−
4
+
2
λ
=
0
⇒
λ
3
−
3
λ
2
+
4
=
0
⇒
λ
=
2
,
2
,
−
1
⇒
k
=
−
1
,
2
1