Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The points (a, b + c), (b, c + a) and (x, a + b) are collinear, if x =
Q. The points
(
a
,
b
+
c
)
,
(
b
,
c
+
a
)
and
(
x
,
a
+
b
)
are collinear, if x =
3623
195
Determinants
Report Error
A
a
9%
B
b
13%
C
c
66%
D
−
a
12%
Solution:
Since the three points are collinear
∴
Area of triangle = 0
⇒
Δ
=
2
1
∣
∣
a
b
x
b
+
c
c
+
a
a
+
b
1
1
1
∣
∣
=
0
⇒
∣
∣
a
b
x
b
+
c
c
+
a
a
+
b
1
1
1
∣
∣
=
0
Applying
R
1
→
R
1
−
R
2
,
R
2
→
R
2
−
R
3
, we get
∣
∣
a
−
b
b
−
x
x
−
(
a
−
b
)
−
(
b
−
c
)
a
+
c
0
0
1
∣
∣
=
0
Expanding along
C
3
, we get
−
(
b
−
c
)
(
a
−
b
)
+
(
a
−
b
)
(
b
−
x
)
=
0
⇒
ab
−
b
2
−
a
c
+
b
c
=
ab
−
a
x
−
b
2
+
b
x
⇒
c
(
b
−
a
)
=
x
(
b
−
a
)
⇒
x
=
c