Let the vertices of a triangle be A(x1,y1) B(x2,y2) and C(x3,y3). Since, (11,9),(2,−1)
and (2,1) are the mid-points of AB,BC and CA. 2x2+x3=2,2y2+y3=−1 2x3+x1=2,2y3+y1=1
and 2x1+x2=11,2y1+y2=9 ∴x2+x3=4,x3+x1=4,x1+x2=22 ∴2(x1+x2+x3)=30 ⇒x1+x2+x3=15
and y1+y3=+2,y2+y3=−2y1+y2=18 ∴2(y1+y2+y3)=18 ⇒y1+y2+y3=9 ∴ The centroid is =(3x1+x2+x3,3y1+y2+y3) =(315,39)=(5,3)