Let (x,y) be any point on the parabola 2y=x2.
Let f(x)=(x−0)2+(y−3)2 =x2+(2x2−3) ⇒f′(x)=2x+2(2x2−3)2<br> Put f′(x)=0 ⇒2x(1+2x2−3)=0 Now, f′′(x)=2+2(2x2−3)+2x(x)
At x=0,f′′(x)=2−6=−4<0,
maximum At x=+2,f′′(x)>0,
minimum At x=−2,f′′(x)>0, minimum ∴ At x=±2 ⇒y=2 ∴ Required point is (±2,2) .