If the plane ax+by+cz=1
cuts the coordinate axes in A,B and C, then area of triangle ABC =21a2b2+b2c2+c2a2
Given equation of plane is 2x+3y+4z=1
On comparing with ax+by+cz=1 ⇒a=2,b=3,c=4 ∴ Area of ΔABC=21a2b2+b2c2+c2a2 =2122⋅32+32⋅42+42⋅22 =2136+144+64 =21244=21⋅261 =61