Q.
The plane passing through the line L:ℓxy+3(1−ℓ)z=1,x+2y−z=2 and perpendicular to the plane 3x+2y+z=6 is 3x−8y+7z=4. If θ is the acute angle between the line L and the y-axis, then 415cos2θ is equal to _____
n1=ℓi^−j^+3(1−ℓ)k^ n2=i^+2j^−k^
Dircction ratio of linc =∣∣i^ℓ1j^−12k^3(1−ℓ)−1∣∣ =(6ℓ−5)i^+(3−2ℓ)j^+(2ℓ+1)k^ 3x−8y+7z=4 will contain the line (6ℓ−5)i^+(3−2ℓ)j^+(2ℓ+1)k^
Normal of 3x−8y+7z=4 will be perpendicular to the line =3(6ℓ−5)+(3−2ℓ)(−8)+7(2ℓ+1)=0 ⇒ℓ=32 ∴ direction ratio of line (−1,35,37)
Angle with y axis cosθ=1+925+9495/3 cosθ=835 ∴415cos2θ=8325×415=125