Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The period of ( tan θ-(1/3) tan 3 θ)((1/3)- tan 2 θ)-1 where tan 2 θ ≠ (1/3) is
Q. The period of
(
tan
θ
−
3
1
tan
3
θ
)
(
3
1
−
tan
2
θ
)
−
1
where
tan
2
θ
=
3
1
is
3931
170
EAMCET
EAMCET 2010
Report Error
A
3
π
B
3
2
π
C
π
D
2
π
Solution:
(
tan
θ
−
3
1
tan
3
θ
)
(
3
1
−
tan
2
θ
)
−
1
where,
tan
2
θ
=
3
1
=
(
3
1
−
t
a
n
2
θ
)
(
t
a
n
θ
−
3
1
t
a
n
3
θ
)
=
3
(
1
−
3
t
a
n
2
θ
)
3
(
3
t
a
n
θ
−
t
a
n
3
θ
)
=
tan
3
θ
∵
tan
3
θ
=
(
1
−
3
t
a
n
2
θ
3
t
a
n
θ
−
t
a
n
3
θ
)
=
tan
(
π
+
3
θ
)
=
tan
3
(
3
π
+
θ
)
So, the period of the given function is
3
π
.